

A Bayesian stochastic unfolding model for sensory dominance judgments

Michael A. Nestrud¹, Michel Wedel², Mark Irwin¹, Steven H. Cohen¹

¹in4mation insights, Massachusetts, USA ²Robert H. Smith School of Business, University of Maryland, USA

Copyright © 2012 by in4mation insights, LLC.

No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, mechanical, photocopying, recording, or otherwise — without the permission of in4mation insights, LLC.

A (Very) Brief History of Multidimensional Scaling Advances (in somewhat chronological order)

Where are we today?

"The discovery of a new dish does more for the happiness of the human race than the discovery of a star." – Brillat-Savarin

BaSIC/'bei·sik/

- 1) most important or central to something
- 2) **Ba**yesian **S**ensory model **I**ntegrated with **C**haracteristics

The BaSIC lower model specification

$$d_{i,j} = \alpha_{i,0} - \sum_{t=1}^{T} (x_{j,t} - y_{i,t})^{2} + \varepsilon_{i,j}$$

 $d_{i,j}$ = Preference rating for product j by respondent i

t = 1, ..., T unknown dimensions

 $x_{i,t}$ = The location of product j on dimension t

 $y_{i,t}$ = The location of respondent *I* on dimension *t*

 $\alpha_{i,0}$ = Additive constant for respondent *i* (e.g. scaling effects)

 $\varepsilon_{i,j}$ = Error term for product j by respondent i

The BaSIC upper model specification

$$x_{j,t} \sim N(r_j' \gamma, \sigma_x^2)$$

$$d_{i,j} = \alpha_{i,0} - \sum_{t=1}^{T} (x_{j,t} - y_{i,t})^2 + \varepsilon_{i,j}$$

 $x_{j,t}$ = the location of product j on dimension t

 r'_j = Vector of predictors, e.g. expert sensory and analytic variables

 σ_x^2 = Standard deviation of x

The BaSIC upper model specification

$$y_{i,t} \sim \sum_{s=1}^{S} \pi_s N([\beta_{0,s,t} + z_i' \beta_t], \sigma_{y,t,s}^2)$$

$$d_{i,j} = \alpha_{i,0} - \sum_{t=1}^{T} (x_{j,t} - y_{i,t})^{2} + \varepsilon_{i,j}$$

 $y_{i,t}$ = the location of respondent *i*'s ideal point on dimension *t*

 π_s = Probability of being in segment s

 $\beta_{0,s,t}$ = Segment Center

 z'_i = Vector of subject predictors, e.g. demographics

 $\sigma_{v,t,s}^2$ = Standard deviation of y, t, s

The BaSIC upper model specification

$$\mathbf{y}_{i,t} \sim N(r_j'\gamma, \sigma_x^2)$$
 $\mathbf{y}_{i,t} \sim \sum_{s=1}^{3} \pi_s N([\beta_{0,s,t} + z_i'\beta_t], \sigma_{y,t,s}^2)$

$$d_{i,j} = \alpha_{i,0} - \sum_{t=1}^{I} (x_{j,t} - y_{i,t})^{2} + \varepsilon_{i,j}$$

Bayesian parameter estimation

Upper & Lower Model Parameters							
$\alpha_{i,0}$	$x_{j,t}$	$y_{i,t}$					
α	σ_{lpha}^2	σ_y^2					
γ	σ_{x}^{2}	eta_t					
$\sigma^2_{y,t,s}$	$\beta_{0,s,t}$	$\pi_{\scriptscriptstyle S}$					

These full conditional distributions can be obtained by standard prior-to-posterior computations using Bayes' theorem. The MCMC algorithm cycles through these twelve distributions, drawing a sample of the parameters from each distribution in turn, conditioning each next draw upon the realizations of the last draws of all other parameters until convergence is obtained.

Non-informative priors with sensible bounds are used to avoid prejudicing the estimation.

Why we use a Bayesian model?

MCMC Estimation of parameters

Information borrowing; Natural imputation of missing data

Upper Model link to lower model

- Easy ID of non-discriminators
- Dimension reduction
- Mitigate the influence of outliers
- Prediction for what-if scenarios

Prevention of the propagation of error

Greater reliability, even with smaller sample sizes

In Summary: HB and BaSIC combine and integrate multiple models

Characteristics Model (Upper)

Demographics

Occasions

Behaviors

Consumer Sensory Evaluations

Analytics

Expert Sensory

Branding

Consumer Segments

BaSIC

Sensory Model (Lower)

Fits Ideal Points into hedonic scores for products (for each person)

Case Study: Beverage Category

	Traditional Landscape	BaSIC
Total products tested	16	16
Number of days	6	4
Tastings per day	3 each for 5 days, 1 for 1 day	3
N	1600	900
Number of products tasted per person	16	12
Number of tastings per product	100	75

Data collected

Consumer Information

- Overall Liking
- Sensory Attribute Intensity
- Demographics
- Usage Occasions

Other Data

- Expert Sensory Evaluations
- Analytical Measurements
- City/Location

Profile Map

Predictive capabilities of upper model

Predicted liking, including the expert sensory and analyticals associated with the new product

	Х	Υ	Analytical Analytical 01	Analytical Analytical 02	Analytical Analytical 03	Analytical Analytical 04	Analytical Analytical 05	Expert Sensory Expert Sensory 01	Expert Senso Expert Senso
Product 1	1.30	-0.11	4.28	4.76	19.40	4.17	2.80	0.00	0.00
Product 2	1.19	-0.12	3.89	6.80	20.60	4.26	2.36	0.00	0.00
Product 3	0.40	0.88	5.92	214.00	31.40	4.35	5.13	0.00	0.00
Product 4	1.15	0.02	4.50	5.65	20.60	4.36	2.90	0.00	0.00
Product 5	0.55	0.75	6.92	70.85	20.10	3.99	4.56	0.00	0.00
Product 6	0.68	0.35	6.48	7.52	21.40	4.02	4.25	0.00	0.00
Product 7	-0.37	-0.45	0.03	175.00	10.00	4.71	14.51	0.00	0.00
Product 8	0.98	0.20	4.74	9.00	19.20	4.34	3.55	0.00	0.00
Product 9	0.50	1.05	6.46	171.00	44.00	3.81	5.69	0.00	0.00
Product 10	-0.05	0.43	4.98	127.00	12.60	4.20	3.51	0.00	0.00
Product 11	1.02	-0.30	4.52	7.37	9.70	4.43	3.67	0.00	0.00
Product 12	0.72	0.35	4.82	14.33	16.30	4.14	3.53	0.00	0.00
Product 13	1.04	-0.01	5.62	6.89	20.20	4.43	3.34	0.00	0.00
Product 14	-0.19	-0.34	4.79	3.72	0.00	2.83	4.88	0.30	0.20
Product 15	0.14	0.42	5.72	8.22	10.90	3.72	2.66	0.00	1.70
Product 16	0.28	-0.21	7.05	4.00	0.00	2.93	9.44	0.00	0.40
New P2	0.27	0.04	4.45	63.93	12.38	3.98	6.64	0.03	0.28

Predicted analytical and sensory profiles.

Tools for Bayesian Analysis

Software

OpenBUGS

SAS

The R Project

in4mation insights

Other thoughts

- HB can be used anywhere as long as you can define a model and a prior distribution
 - ✓ (Choice Based) Conjoint Analysis
 - ✓ Just About Right Scales
 - ✓ Ideal Profile Method

Merci!

Michael Nestrud, Ph.D.
Director, Sensory Science
in4mation insights
mnestrud@in4ins.com
+011 781 444 1237 x126

J'adore les huîtres, on a l'impression d'embrasser la mer sur la bouche. -Léon-Paul Fargue (Moi aussi!)