PLANNING RESEARCH THAT ACCOUNTS FOR BUSINESS AND STATISTICAL RISK

Tom Carr, Carr Consulting

Jeannine Dzuroska, Symrise, Inc.

AGENDA

STATISTICAL RISKS – TOM CARR, CARR CONSULTING

BUSINESS RISKS – JEANNINE DZUROSKA, SYMRISE, INC.

STATISTICAL RISKS IN SENSORY RESEARCH

TWO INCORRECT CONCLUSIONS CAN HAPPEN IN SENSORY RESEARCH

- Concluding that a difference exists when it does not.
- Failing to detect a difference that is present.

THE "FALSE POSITIVE"

- Concluding that a difference exists when it does not.
 - Type I Error, with associated probability, α .
 - No difference is present but an extremely unlikely outcome is observed in the study.
 - Leads to the incorrect conclusion that the samples are different.
- More important in developmental research.
 - Do not want to claim an improvement when there is not one.

THE "FALSE NEGATIVE" (?)

- Failing to detect a difference that is present.
 - Type II Error with associated probability β and effect size Δ .
 - Outcome does not appear to be particularly extreme for the case when no difference is present.
 - Leads to the incorrect conclusion that the samples are not different.
- More important in product maintenance.
 - Do not want to miss that the cost-reduced prototype is perceptibly different or less liked than the control.

CONTROLLING STATISTICAL RISKS

- An adequately sensitive study is one that has acceptable levels of:
 - Δ : How big of a difference makes a difference?
 - β: What chance are will willing to take of missing a difference as big or bigger than Δ?
 - α: What chance are we willing to take of claiming that there is a difference when there is not?
- Δ is difficult to specify because we typically do not know the size of the difference that impacts consumer behavior.
 - Typically set arbitrarily, e.g., 0.5 units on the 9-point liking scale or 25% discriminators in a difference test.
- ❖ Ideally, α/β ~ Cost_{\beta}/Cost_{\alpha}, but we seldom know both costs.
 - Typically set by firm's historical practice, e.g., α = 0.05, β = 0.20.

SAMPLE SIZE: NUMBERS OF ASSESSORS AND REPLICATES DRIVE THE SENSITIVITY OF THE TEST

❖ Picking the right sample size boils down to controlling the amount of overlap between the null and alternative hypothesis distributions so you get the desired values of α and β for the effect size (Δ) you have chosen.

HOW TO DESIGN BETTER TESTS

- \diamond Determine relevant values for Δ .
 - How far can a product deviate from its target ratings before experiencing a meaningful drop in quality?
 - Consumer based criteria
 - Compatibility with other product components
 - etc.
- Determine costs associated with Type I and Type II errors.
 - It is never as simple as Testing for a Difference vs. Testing for Similarity.
 - Relative costs vary from one study to another but it is seldom, if ever, the case that one or the other cost is 0.

Jeannine Dzuroska, Symrise, Inc.

BEYOND ALPHA & BETA THE REALITY CHECK

BUSINESS RISKS THE USUAL SUSPECTS TO THE LESS CONSPICUOUS

BUSINESS RISKS THE USUAL SUSPECTS TO THE LESS CONSPICUOUS

AND LAST, BUT CERTAINLY NOT LEAST ISTHE RESEARCH

A CASE STUDY LAUNDRY

Sensometrics 2012

