COMMUNICATING RESULTS FROM TEMPORAL SENSORY STUDIES

SSP/SENSOMETRICS 2012 WORKSHOP

Workshop Acknowledgements

Thanks to

Amanda Warnock

Givaudan Flavors Corp., Cincinnati, USA

Sarah Kirkmeyer

Givaudan Flavors Corp., Cincinnati, USA

Chris Findlay

Compusense Inc., Guelph, Canada

Tom Carr

- industry experience working on high-potency sweeteners
- experience consulting for major consumer packaged goods companies
- will discuss communication of time intensity results

Suzanne Pecore

- Principal Sensory Scientist, General Mills, Inc.
- introduced the TOS method at the 9th Pangborn Symposium in Toronto
- shared slides that she will present at the SSP
 2012 meeting in Jersey City

COMMUNICATING RESULTS FROM TEMPORAL SENSORY STUDIES

SSP/SENSOMETRICS 2012 WORKSHOP

INTRODUCTION

John Castura

Compusense Inc.

Measuring A and B

- Instrument 1 tells us A = B.
- Instrument 2 tells us A ≠ B.

Why this disagreement?

They measure different dimensions.

Descriptive Analysis

Two products characterized as equally intense.

Difference Testing

Yet differences between products might be obvious

Same

Different

A ≠ B

The Temporal Dimension is Missing

 Onset, order, and duration of sensations may differentiate the products.

Temporal Sensory Methods

- Get another perspective on the problem at hand
 - Investigate a dimension that conventional descriptive analysis might miss
 - Understand systems and interactions
 - Understand the gap between the formulation and the objective

1. Evaluations at Time Points Communicating results for temporal sensory studies

Cued evaluation at designated times

- Phase of eating
- Specific intervals (e.g. 1 minute, 2 minutes, etc.)

e.g.

- Progressive Profiling Jack et al., 1994
- Sequential Profiling Methven et al., 2010

- Multiple Attribute Time Intensity
 - Introduced by Kuesten *et al.* (2011)

2. Time Intensity Communicating results for temporal sensory studies

2. Continuous Time Intensity

- Single-Attribute Time Intensity
- Dual-Attribute Time Intensity

2. Continuous Time Intensity

2. Continuous Time Intensity

- Most common analyses work with extracted
 TI parameters
 - Area Under Curve
 - Maximum Intensity & Time of Maximum Intensity
 - Increasing and Decreasing Angles
- Other approaches have been proposed

COMMUNICATING RESULTS FROM TEMPORAL SENSORY STUDIES

SSP/SENSOMETRICS 2012 WORKSHOP

COMMUNICATING RESULTS OF TRADITIONAL TIME-INTENSITY EVALUATIONS

Tom Carr

Carr Consulting, Wilmette, IL, USA

Traditional TI Method

- One (maybe two) attributes evaluated over time.
- Assessors continuously track and report the perceived intensity of the attribute.
- Key features of the TI curve are extracted from each assessor's curve.
- Test products are compared statistically by performing ANOVA or MANOVA on the key-features data.

Key Features of a Traditional TI Curve

Direct Measures

- On-Set Time (T_{initial})
- Time to Maximum Intensity (T_{max})
- Maximum Intensity (I_{max})
- Time at Maximum Intensity (T_{plateau})
- Extinction Time (T_{final})
- Possibly, Final Intensity (I_{final})

Key Features of a Traditional TI Curve

Derived Measures

- Rate of Increase (Slope_{increasing})
- Rate of Derease(Slope_{decreasing})
- Area Under the Curve (AUC)
- Possibly, Area Under Increasing Curve, Area Under Plateau and Area Under Decreasing Curve

Summarizing Average TI Curves

- TI Evaluations Lend Themselves to Graphical Summaries.
- To Avoid Confusion, Tabular and Graphical Summaries Should Communicate the Same Information.
- Averages of Key Features (Tabular Results) Do Not Match the Graph of Average Intensities.

Summarizing Average TI Curves

Note that Key Features of the Average TI Curve (Graph)
 Do Not Match the Average of the Key Curve Features (Table).

Response	Sample	
I _{Max}	55.5	
T _{Initial}	2.1	
T _{Max}	17.5	
T _{Decent}	22.1	
T _{Final}	55.7	

Summarizing Average TI Curves

 Liu and MacFie (1990) propose a method where the TI Curve (Graph) Matches the Average of the Key Curve Features (Table).

Response	sponse Sample	
I _{Max}	55.5	
T _{Initial}	2.1	
T _{Max}	17.5	
T _{Descend}	22.1	
T _{Final}	55.7	

Chemical Senses (1990) vol. 15, no. 4, pp 471-484.

Reporting Results

- Focus on What You Learned, Not What You Did.
 - State Objective of the Study.
 - Briefly summarize what samples were tested and the basics of the methodology.
 - Number and Qualifications of Assessors.
 - Attribute(s) Evaluated.
 - How were Data Collected and Sampling Frequency.
 - Duration of Evaluations (Fixed Time or Until Extinction).
- One Slide Anything More is a Methods Document.

Reporting Results

- Define Key Curve Features Graphically.
 - Consider presenting only those that relate to the objective of the study or that revealed new learning.

Reporting Results

- Speak to Your Audience.
 - How you present results to product developers can be different than how you present results to marketing and upper management.
- Report Results as They Relate to the Objectives.
 - Focus on the Relevant Curve Features.
 - Do Not Present a Laundry List of Significant Differences.
- For a Non-Technical Audience, Discuss Key Curve Features Non-Technically.
 - e.g., "Sample A achieved its maximum intensity 4 seconds earlier than Sample B" as opposed to, " $T_{\rm max}$ of Sample A was significantly lower than $T_{\rm max}$ of Sample B."
- Draw a Conclusions Relative to The Objectives.

3. Temporal Sensations Communicating results for temporal sensory studies

3. Temporal Order

Temporal Dominance of Sensations

- Introduced by Pineau et al. (2004)
- Assessors indicate the "dominant" attribute

3. Temporal Order

 A significance line can be added to better communicate 'signal' and 'noise'

COMMUNICATING RESULTS FROM TEMPORAL SENSORY STUDIES

SSP/SENSOMETRICS 2012 WORKSHOP

In Practice...

TEMPORAL ORDER OF SENSATIONS

Suzanne Pecore

General Mills, Inc.

Why would you do TOS?

- If you suspect/notice any disruption to the temporal profile, as in:
 - Onset or linger of key flavors
 - Flavor release
- If the eating experience seems to vary with succeeding bites, as when:
 - Upfront tastes noticeably vary by bite
 - Upfront tastes vary with formulation

Why TOS over other Temporal Methods?

- It's focused purely on attribute onset
 - Intensity of attributes is irrelevant
 - Intensity of attributes is captured by other means
- It's efficient:
 - No extensive panelist training required
 - No customized software is needed
 - Easy and fast data collection

TOS versus TDS

- TOS is a technique to measure the <u>order</u> that key attributes <u>appear</u> over the eating experience, i.e., over *several spoonfuls* and into the aftertaste
- TDS is a technique to measure the <u>order</u> and the <u>time</u> that key attributes are <u>dominant</u> during a single spoonful of product.
 - A 2nd, more sophisticated level of TDS includes intensities of the dominant attributes over time.

What does TOS capture?

• 1st Sip/Spoonful:

Extensive List NOT recommended Take a spoonful of the product and <u>quickly</u> check which attributes hit 1st - 2nd - 3rd in the order they are perceived. Do not give intensity ratings.

		Order Perceived			
	Hits 1st	Hits 2nd	Hits 3rd		
Flavor 1					
Flavor 2					
Flavor 3					
Other? Identify					
Salt					
Sweet					
Sour					
Bitter					

- Repeat for <u>TWO MORE</u> Samplings
- Aftertaste Checklist follows 4th Sampling

TOS Output based on Proportions*

Pros: Illustrates differences in onset and linger of key flavors, particularly in the 2nd and 3rd sips. First sip data alone would not have been that useful. Aftertaste also differed.

Cons: Smoothed curves often mistaken for intensity changes. Connecting "proportions" does not make intuitive sense.

^{*} Adapted from Pineau, et al. (2009)

TOS in Practice

- Alternate source of meat was suspected to deliver spiciness later in eating experience than current meat
- Concern that delayed spiciness could impact consumer acceptance
- TOS recommended to understand onset of spiciness

TOS Output based "Seen 1st"

Proportion showing spicy flavor 1st in Spoon 1 was lower for Test Meat, and less than chance level.

Pros: Immediate understanding of upfront taste within each bite. Can establish significance by comparing binomial proportions to chance (1/total number of attributes)

Cons: Loses information on full eating experience.

TOS Output based Weighted Order of Occurrence

Weighted order of occurrence score demonstrated later delivery of spicy flavor in Test Meat

Pros: The higher the rating the earlier/more often that attribute appears (assigned '3' if hits 1st, a '2' if 2nd, and '3' if 3rd). Data can be subjected to standard statistical analyses.

Cons: Within sip differences are obscured.

TOS Influenced Business Decision

- TOS identified critical differences in eating experience
- Results guided supplier to a formulation more closely matching the TOS profile of current
- No loss of product sales with switch to new meat supplier.

Some key points... Communicating results for temporal sensory studies

Temporal Sensory Methods

- Advantages and disadvantages to every temporal method available in sensory science
- Methods are a tool for problem-solving and hypothesis generation
- Consider the results and how they change the current understanding

Some Conclusions

- Select appropriate sensory methods
 - Each captures different information, not better information
 - Each costs money, so should deliver value
 - Coupling methods gives different perspectives to assist with problem-solving
- Communicate well!

COMMUNICATING RESULTS FROM TEMPORAL SENSORY STUDIES

SSP/SENSOMETRICS 2012 WORKSHOP

DISCUSSION