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SENSORY ANALYSIS Introduction

Outline

@ A novel Modelling approach is introduced and parameters are
estimated via an EM algorithm. Smoothing splines are also
aggregated.

@ Four simulations are performed on simulated data; we obtain fitted
curves based on the assumptions of homoscedastic and
heteroscedastic error terms, respectively, at each time point.

@ Real fruit liqueur data are analyzed.

@ Discussion and suggestions for future work.
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SENSORY ANALYSIS Introduction

Aim

@ To estimate underlying time intensity curves and cluster individuals.

@ How it can help us to discover useful information about attributes.
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Methodology

Modelling Framework

@ TI curves are monotonically increasing until time Tax and then
monotonically decreasing thereafter.

Intensity

Time

Figure 1: TI Curves

@ We represent this dependence with a Markovian error term.
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Modelling Framework

@ Let z; be the observed Tl value and x; be the latent Tl value so that

max{xj_1,x;} for i=2,... k,
min{x;_1,x;} for i=k+1,k+2,...,n.

zi =
where X; mN(u;,o,-Z), k is Tmax and n is total time points.

For the Markovian error term, we consider two options:

© Homoscedasticity: there is a common standard deviation across all

time points for all panellists, i.e., 02 = 2, for i =1,2,...,n.

i =

© Heteroscedasticity: each time point has its own standard deviation.
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Modelling Framework

@ The complete-data log-likelihood function using the homoscedastic &
is

n 1 =
E(Mh ceey Mny O ‘ Zly .- 72") = _7,) |0g(2ﬂ'0’2) - ﬁ ZZ((XU - :uf)Q | 2)7
i=1 j=1
@ The complete-data log-likelihood function using the heteroscedastic

ag; is

L(p1y -y tnyO1,...,0n zl,...,z,,)———log(27ra, 2222 i — i)’ | Z).

=1 j=1
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EM Algorithm

@ The EM algorithm is an iterative method for finding maximum
likelihood estimates of parameters where there are unobserved or
missing data.

@ An expectation (E-) step that computes the expectation of the
complete-data log-likelihood given the current estimates is followed by
a maximization (M-) step wherein the expectation of the
complete-data log-likelihood is maximized with respect to the model
parameters.

@ The E- and M-steps are iterated until convergence.
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Truncated Normal Distribution

e X | Z « truncated N (u;, 0?)

o X | Z - truncated N(y;, 0?)

so, the expectation

E(X|a<Z<b):u+¢Eb

and the variance

Var(X |a< Z < b) =0’ 1+

S (bx)<¢(:ﬂ)—¢<"y)>2]
O(EE) — o(ik - =
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E step

Zj |f Zi>zi—17
E(X;|z_1,z)= e :
(Xi | zie1,zi) /'Li_:;((zl'iéi)) if zi =2z1,
for i =2,...,k and
Zj |f Zi_1 >Zi7
E(X; | zi-1,21) = Sl
( i ‘ZI 1 ZI) pi + % if z_1 =2z,

fori=k+1,...,n.
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M step

Under the homoscedastic assumption, the expected value of the
complete-data log-likelihood is given by

Ql(x,zmaz)z—flog(zm 2QZZE{ i—ni)? 2},

i=1 j=1

where p is number of repetitions, n is number of time points and u is a
n x 1 matrix.

1

—ZE{XU\Z} and = ZZE{ i — i) 2}

/111

‘O
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M step

For the second assumption-heteroscedastic o, the expected value of the
complete-data log-likelihood function is

P

. 1
oz(x,2|u,a2)=—§§jloga?—2 OQZE{ j— )12} + €,
i=1

i=1 !

where C is a constant.

1

p p
—Z E{X;|Z} and 6?:;ZE{(XU—/~H)2|Z}.
i=1 j=1

p 4
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Smoothing Spline: why
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Figure 2: Fitted Curve
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Smoothing Spline

@ The penalized spline smoothing was introduced by O’Sullivan (1986).

@ This smoothing method with flexible choice of bases and penalties
can be viewed as a compromise between regression and smoothing
splines which are piecewise polynomials with pieces smoothly
connected together.
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Smoothing Spline

o Let (xj, Yi), sothat x; < xo < -+ < x,, be a sequence of observations
modelled by the relation Y; = u(x;). The penalized sum of squares is

n

b
S(n) = (Vs = )+ A [ (02

i=1 a

@ 4 is any twice-differentiable function on [a, b] and A is a smoothing
parameter.

@ The first term measures the closeness of the fitted function to the
data, while the second penalizes the curvature in the function.
@ The smoothing spline estimate ji of the function p is

Qi = arg min S(p).
HEN
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Preparation

© Randomly generate the latent Tl x; values which follow a normal
distribution with parameters p; and ¢ = 0.01.

@ A straightforward method to generate observed data z, ..., z, is
given below:

71 = x1, 22 = max(x, x2), . .., Zke1 = max(xk—2, Xk—1), zk = max(xk—1, Xk),

Zkr1 = Min(Xic, Xk41) « -+ » Zo—1 = MIN(Xp—2, Xn—1), Zn = MiN(Xn—1, Xn),

where n = 51.
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Simulation Study

Preparation

intensity
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Simulation Results:Homoscedastic Model

When o = 0.01
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Figure 4: Fitted Curve Figure 5: Smooth Curve
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Simulation Results:Homoscedastic Model

When o = 0.03
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Figure 7: Smooth Curve
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Figure 6: Fitted Curve
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Simulation Study

Simulation Results:Heteroscedastic Model

When o = 0.01
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Figure 8: Fitted Curve
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Simulation Study

Simulation Results:Heteroscedastic Model

When o = 0.03
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Figure 10: Fitted Curve
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Results:Homoscedastic Model

Figure 12: Smooth curves for product A
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Fruit Liqueur Data

Results:Heteroscedastic Model

Figure 13: Smooth curves for product A
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Clustering

Group 1: panelist 1, 3, 10

Group 2: panelist 2, 5, 6, 7, 12

Group 3: panelist 9, 11

Group 4: panelist 4

@ Group 5: panelist 8
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Fruit Liqueur Data

Results:Homoscedastic Model

Figure 14: Smooth curves for product B
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Product A vs. Product B: Homoscedastic Model

Product A Product B
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Figure 15: Smooth Curves for 12 Figure 16: Smooth Curves for 12
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Product A vs. Product B: Homoscedastic Model
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Figure 17: Smooth Curves between product A and B for each panelist
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Conclusion

(]

Using different assumptions, the smoothing curves have similar shapes
and are a representation of 3 Tl curves.

Recommending using homoscedastic o obtain smooth Tl curves.

@ There is variation among the panelists for product A and product B.

Panelists give very similar smoothing curves between product A and
B.
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Future Work

In the future, the problem of dealing with T,.x. Because it is the crucial
part of conducting a accurately fitted curve.
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