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v Background

v Introduction to Simultaneous Component Analysis (SCA)
and Multi Level Component Analysis (MLCA)

v Technical details
v Analysis and results

v Conclusions & outlook



Measuring product experience of food® (- wf®

v Food is a complex, multisensory experience
Total Product Experience
Multisensory

W e.g. aftertaste,
i . satiety

Usage After

e.g. preparation,

cookini

v Questionnaire to capture multisensory experience in consumers

» Based on literature review: Berlyne’s work on exploratory behaviour and aesthetics,
choice/preference theory by Dember and Earl

» Covering different aspects of product experience: manipulation, preparation, consumption
» Evaluative variables related to complexity, aesthetics, usage, novelty
» 33items, line scale, left and right anchored (example below)

Difficult to open Easy to open

| |
| ]
old | | New
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. White Simple Coffee Cup

Study design

v Evaluation of product experience in milk tea
» 220 subjects

« Central Location Test (China)

v Stimuli
» Four products following a 2x2 (Packaging, Flavour) factorial design
« Warming up with dummy
* Preparation included in evaluation

v Randomised per subject to correct for order and carry over

v Results in multilevel (multiway) multivariate data

Attributes —

Attributes

Products

Products L Individuals

Products
Products

Products
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Analysis of multi-level data in sensog’suence hg” §
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v-Common approach to analyse multivariate data from multiple subjects (panel)
In sensory

» Average score per product (or LS estimates after ANOVA)

» PCA (biplot visualisation)

v Multilevel, multivariate data with consumers

* Not very common

» Averaging does not make sense as consumers are not trained and may vary widely
in their perception or interpretation of the attributes

« Advanced alternatives (e.g. MFA, GPA, STATIS) focus on finding a consensus in
terms of products

= Method that estimate a common component model but would allow to reflect
the individual differences and take into account the hierarchical nature of the

data



Introduction to MCA 3' o

v Simultaneous Components Analysis (SCA)

» Generalization of PCA developed (ten Berge, Kiers, van der Stel,1992) for
situations where same variables are measured in two or more populations

» Applied e.g. in social sciences (same questionnaire applied to different
populations)

« Common loadings maximizing explained variance in each groups

v Extension to model multivariate time series (Timmerman & Kiers, 2003)
« Shows evolution of latent structure in time
« Common loadings

 Different degree of constraints imposed on scores matrices
v Generalisation of SCA to multi-level data (Timmerman, 2006)

« Decomposition of data into within and between part

« Separate (S)CA to model between and within part
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Application to our product experience data 1 ® o 4
- . "&' -

Position of the individual

Individual matrices .
relative to each other

stacked upon each others

Xl Dim 2
X2 Split variability into
- offset C A
- between particigants N > Dim 1
X3 - within participants
+ residual term SSbhetween
X4
Position of the products
relative to each others
Dim 2
N
o (S)CA 0
SSwithin _ — .
onstraint on within models Dim 1




Principle
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v Split the different sources of variability (ANOVA) for each variable j

SS total , | = SSoffset,j + SSbetween participant , j+ SSWithin participant, + SSerror,j

v Component model for each of the part

i =1gm' + 1g f'B'y + FiB'ow + Ej

offset per variable

between subject CA

within subject CA

. , MLSCA-P:
- in model 0 (MLCA): F;,, and B,, differ for each
individual subject MILSCA-PF2:
- in model 1 to 4 (MLSCA): B,,= B,, with different
constraints on the variance-covariance structure of F;, MLSCA-IND:
MLSCA-ECP:

\’

error term

B



Within subject model

v Five alternative with increasing degree of constraint, based on the
alternatives proposed in SCA

0 MLCA free free free
4 MLSCA-P equal free free
3 MLSCA-PF2 equal equal across subjects  free
2 MLSCA-IND equal equalto O free
1 MLSCA-ECP equal equal across subjects  equal across subjects

=Compare how the different models fit the data and how they can be
interpreted in terms of consumers’ perception
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Selecting & comparing models (Yo
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v Selecting the right model
 Fit: Variance accounted for within part & between part of the data
 Stability: assessed by means of a split-half procedure

* Degree of complexity and interpretability

v Split-half procedure

Random split between participants

Comparison between models (loadings) for both halves

Repeat n=100 times

Average over n repetitions

v Interpretation
« Compare loadings matrices
 Visualisation (biplots)

» Assess agreement between subject by comparing loadings and/or scores

10
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Comparing models ye

v Two indices quantifying similarities between matrices

» Tucker congruence coefficient (¢)
B tr(XY")
VEr[(XXD]er[(YY))]

introduced to measure similarity of two factorial configurations

— apply to matrices (e.g. loadings or scores matrices) of same dimensions

— takes values between -1 and 1 (¢=0 no correlation, |@|=1 perfect correlation)
applied after (procrustes) rotation and scaling of the factor solution: @,

@

» RV-coefficient (Robert & Escoufier, 1976)

_ tr(XX'YY") where XX' = XX' (original)
VEr[(XXD21tr[(YY)?] XX' = [XX' — diag (XX")] (modified)

RV

orientation independent
allows for different number of variables
— usually used to compare sample configurations (scores)

— modified version independent of sample size (Smilde, 2009) and takes values
between -1 and 1 (¢=0 no correlation, |@|=1 perfect correlation)

11



Results
Fit and model selection

v Fit and stability of the model

» Between part

VAF (%) 21 27 32 34 35
Mean congruency coefficient 098 095 096 085 0.88
« Within part
VAF (%) 0 (Unconstrained) 40 50 54
4 (Loadings) 25 32 35
3 (Loadings, cov) 25 31 33
2 (Loadings, cov=0) 25 30 32
1 (Loadings & var-cov) 19 21 22
Mean congruency 0 (Unconstrained) - - -
coefficient 4 (Loadings) 0.9920 0.9830 0.9766
3 (Loadings, cov) 0.9919 0.5935 0.7576
2 (Loadings, cov=0) 0.9922 0.9719 0.9707
1 (Loadings & var-cov) 0.9935 0.9699 0.9791

= Number of dimensions: between part: Qb=3, within part: Qw=2
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Component 2
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Between part (rotated)

v Interpretation of the questionnaire

scale usage, overall perception of milk tea
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Within part o g

Model 0: unconstrained '
v Individual PCA (rotated)
 Large variability between individual
— Loadings: @,,; = 0.34 (median)
— Scores: ¢,,,= 0.76, RV=0.64, RVM = 0.39 (median)
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Improving interpretation

Unconstrained model

v Segmentation

- Cluster analysis (Ward’s method) based on similarity of

individual loading matrices (as measured by o,
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Segment 2, n=42, Phi=0.62
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Within part v 4 ‘

Model 2: constrained loadings and covariance = 0

»

v Same loadings for all subjects

e Dim1: Aesthetics & Complexity  Dim 2: Novelty/Familiarity

v  Agreement between subijects:
— @, = 0.69, RV=0.50, RVM= 0.28 (median) )
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Model 2: constrained loadings and covariance
v’ Segmentation

Improving interpretation

» Cluster analysis (Ward’'s method) based on similarity of product

configuration in the common space (as measured by unrotated ¢)
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Component 2

Component 2

Segmentation (Model 2)

v Example of cluster membership
— visualisation
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v ML(S)CA proved useful approach to model our data

Takes account of the hierarchical structure of the data
Offers the possibility to impose a common factor structure across subjects

Allows to compare different levels of constraints for the individual models

v Congruence & RV-coefficients are useful

in selecting and comparing models

in interpreting the solution (measure of similarity between individual configuration & input
for segmentation)

the best index depends on the purpose of the comparison/segmentation

v Unconstrained model provides the best fit but the separate interpretation of the
individual within loadings matrices can be very inefficient and difficult to reveal intra-
individual similarities

v Imposing SCA constraints on the within part of the data

Models 4 & 2 perform best: lead to comparable VAF, stability and interpretation; model 2
best VAF/complexity ratio

Model 3 with 2 components is unstable compared to the rest but model with only one
component has reduced fit and interpretability

Model 1: drop in fit indicates that same variance not suitable for our data 20
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Relation to other methods [y e

v Framework for comparison in van Deun et al (2009)

MFA: common object model i.e. look for a common configuration of the product, pre-
processing (scaling by individual), weight individual matrices by amount of redundant
information (18t eigenvalue)

STATIS: common object mode, no specific pre-processing, larger weight on matrices
with cross-products(RV) most similar to others (compromise)

GPA: common object mode, pre-processing taken into account by translation or
scaling transformation, all individual matrices equally weighted in consensus

ML(S)CA: common variable mode i.e. seeks for a common set of underlying
components, pre-processing: normalising per respondent taken care by offset &
between part of model, all individual matrices equally weighted in solution

v Timmermans (2006) also makes the parallel with multiway methods and multi-
level SEM

Tucker-1 model equivalent to SCA-P model

Tucker-2, -3 & PARAFAC more than one mode is reduced into a component matrix;
possible alternatives for within part of the model

Existing multilevel SEM constrain within covariance matrices to be equal for all
participants

21
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Backup slide: MLCA algorithm ye

v Minimizing the SS,., using a OLS approach !

I
F(m,ﬁb, BbJFiWJBiw] = Z”Ya - 1R2'm: + lﬁff:ibB:b + ‘;[?1"»-';8:1";-';"2 I/Wlé'ﬂ? =1
i=1

v Offset, between and within part solved separately by minimizing

(1) _ B 2 where Ysup denotes a supermatrix
fu(m) Z”Ysup Lgm | with the Y, stacked upon each others
i=1

= Solved by taking m = vector containing the observed mean scores
computed for all participants and products

(2) where Fsup denotes a supermatrix

T f 2 -
f2 (Fsupy, By) = |[Ysup — 1, f':,B', | with the 1,,;f’;, stacked upon each others

I
(3) £ FunBu) = ) %= Fu Bl
i=1

= Both (2) and (3) solved based on singular value decomposition

24



Backup slide: MLSCA algorithm /L% ® 28

v Minimizing the SS,., using an OLS approach

G, fi By, P Bu) = ) ||V = L + 1 f By + Fi B |

i=1
v Offset, between and within part solved separately by minimizing
« Offset and between part, see previous slide

« Within part solved based on ALS algorithm described in Kiers, ten Berge &
Bro (1999)

gl(_Fiw,Bwj—Z( v 1 Y) Zu]y F.B.|

MLSCA-P: e F,,'F,, = ®;
11 ,
subject to constraint on covariance of MLSCA-PF2: - Fi, Fy, = D, @D,
matrices F,, of the specific SCA model 1 ,
MLSCA-IND: 3 FuwFiw = D;
1 r
MLSCA-ECP:  FuwFaw =@

ey

25
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v Model 0 (MLCA): individual PCA for each subject; the space describing the products
and their position therein is different for each subject; similar to like GPA (Paey’s
approach) except that we are not trying to rotate the results to get a consensus (might

~_ beanidea)

v Model 4 (SCA-P): the space describing the position of the products is the same but the
position of the product may vary per individual; this is similar to Tucker-1 and performing
PCA on the stacked matrices (under certain conditions)

v Model 3 (SCA-PFE2): the space describing the position of the products is the same and
the relative position is constrained to be the same for each subject; the variance may
differ per subject; related to PARAFAC

MLSCA

v Model 2 (SCA-IND): the components are constrained to be uncorrelated for each
individual

v Model 1 (SCA-ECP): most constrained model where variance is constrained to be the
same for all subjects; might be less relevant to our data

= Interesting to compare how the different models fit the data and how they can be
interpreted in terms of consumers’ perception

26



Additional issues (@

v Pre-processing

» Centring across or per subject not necessary since offset and between
subject terms are modelled explicitly

* Normalisation per variable (over other modes) recommended
— Eliminate artificial scale differences between variables
— No further lost of source of variability, factor model preserved

— Arguable in our situation: might choose not to standardised at all, since
difference in variability between variable might reflect perceived differences

v Rotational freedom
* Between part: insensitive to orthogonal and oblique rotation

o Within part:
— Model 0, 1 & 4: insensitive to orthogonal and oblique rotation
— Model 2 & 3: unique solutions

* Normalisation of component scores to facilitate comparisons

27



Results

Agreement between subjects

v Overview (median)

Description  Unconstrained

Loadings P> Prot

Scores

0.14,0.34

®, @, RV, RVM
0.12,0.76,0.64,0.39

Constrained loadings

?, o RV, RVM
0.07,0.63,0.41,0.19

Constrained loadings
and cov

®?, o RV, RVM
0.10, 0.58, 0.31, 0.10

Constrained
loadings and cov=0

@, Prop, RV, RVM
0.05,0.69,0.50,0.28

Constrained loadings
and var-cov matrices

?, o RV, RVM
0.03, 0.75, 0.63, 0.36

v Most suitable index depends on objective

— Model 0: compare rotated configuration since individual models unconstrained

* moderate agreement on loadings
» seemingly high agreement on scores but not higher than chance given the small number of samples

— Model 1 to 0: compare scores directly (unrotated) makes sense since loadings are constrained

to be equal
* very low agreement

* higher level of constraint improves agreement on relative position of products
* model 3 falls out of this trend
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