

Multilevel Component Analysis applied to the measurement of a complex product experience

Boucon, C.A., Petit-Jublot, C.E.F., Groeneschild C., Dijksterhuis, G.B.

Outline

- √ Background
- ✓ Introduction to Simultaneous Component Analysis (SCA) and Multi Level Component Analysis (MLCA)
- √ Technical details
- ✓ Analysis and results
- √ Conclusions & outlook

Measuring product experience of food

√ Food is a complex, multisensory experience

Total Product Experience Multisensory

e.g. aftertaste, satiety After

Usage

- Based on literature review: Berlyne's work on exploratory behaviour and aesthetics, choice/preference theory by Dember and Earl
- Covering different aspects of product experience: manipulation, preparation, consumption

e.g. preparation,

Before

cooking

- Evaluative variables related to complexity, aesthetics, usage, novelty
- 33 items, line scale, left and right anchored (example below)

Study design

- ✓ Evaluation of product experience in milk tea
 - 220 subjects
 - Central Location Test (China)
- √ Stimuli
 - Four products following a 2x2 (Packaging, Flavour) factorial design
 - Warming up with dummy
 - Preparation included in evaluation
- ✓ Randomised per subject to correct for order and carry over
- ✓ Results in multilevel (multiway) multivariate data

White Simple

Coffee Cup

Original

Chocolate

Analysis of multi-level data in sensory science

- Common approach to analyse multivariate data from multiple subjects (panel) in sensory
 - Average score per product (or LS estimates after ANOVA)
 - PCA (biplot visualisation)
- ✓ Multilevel, multivariate data with consumers
 - Not very common
 - Averaging does not make sense as consumers are not trained and may vary widely in their perception or interpretation of the attributes
 - Advanced alternatives (e.g. MFA, GPA, STATIS) focus on finding a consensus in terms of products
- ⇒ Method that estimate a common component model but would allow to reflect the individual differences and take into account the hierarchical nature of the data

Introduction to MCA

- √ Simultaneous Components Analysis (SCA)
 - Generalization of PCA developed (ten Berge, Kiers, van der Stel,1992) for situations where same variables are measured in two or more populations
 - Applied e.g. in social sciences (same questionnaire applied to different populations)
 - Common loadings maximizing explained variance in each groups
- ✓ Extension to model multivariate time series (Timmerman & Kiers, 2003)
 - Shows evolution of latent structure in time
 - Common loadings
 - Different degree of constraints imposed on scores matrices
- ✓ Generalisation of SCA to multi-level data (Timmerman, 2006)
 - Decomposition of data into within and between part
 - Separate (S)CA to model between and within part

Principle

Application to our product experience data

Principle

Split the different sources of variability (ANOVA) for each variable j

$$SS_{total, j} = SS_{offset, j} + SS_{between participant, j} + SS_{within participant, j} + SS_{error, j}$$

✓ Component model for each of the part

within subject CA

- in model 0 (MLCA): Fiw and Biw differ for each individual subject
- in model 1 to 4 (MLSCA): $B_{iw} = B_{w}$ with different constraints on the variance-covariance structure of Fix

MLSCA-P: $\frac{1}{K_i} F_{iw}' F_{iw} = \Phi_i$ MLSCA-PF2: $\frac{1}{K_i} F_{iw}' F_{iw} = D_i \Phi D_i$

 $\longrightarrow \text{MLSCA-IND: } \frac{1}{K_i} F_{iw}' F_{iw} = D_i^2$

MLSCA-ECP: $\frac{1}{K} F_{iw}' F_{iw} = \Phi$

Within subject model

✓ Five alternative with increasing degree of constraint, based on the
alternatives proposed in SCA

Model	Name	Loadings	Covariances	Variances
0	MLCA	free	free	free
4	MLSCA-P	equal	free	free
3	MLSCA-PF2	equal	equal across subjects	free
2	MLSCA-IND	equal	equal to 0	free
1	MLSCA-ECP	equal	equal across subjects	equal across subjects

⇒Compare how the different models fit the data and how they can be interpreted in terms of consumers' perception

Selecting & comparing models

✓ Selecting the right model

- Fit: Variance accounted for within part & between part of the data
- Stability: assessed by means of a split-half procedure
- Degree of complexity and interpretability

√ Split-half procedure

- Random split between participants
- Comparison between models (loadings) for both halves
- Repeat n=100 times
- Average over n repetitions

✓ Interpretation

- Compare loadings matrices
- Visualisation (biplots)
- Assess agreement between subject by comparing loadings and/or scores

Comparing models

- √ Two indices quantifying similarities between matrices
 - Tucker congruence coefficient (φ)

$$\varphi = \frac{tr(XY')}{\sqrt{tr[(XX')]tr[(YY')]}}$$

- introduced to measure similarity of two factorial configurations
- apply to matrices (e.g. loadings or scores matrices) of same dimensions
- takes values between -1 and 1 (ϕ =0 no correlation, $|\phi|$ =1 perfect correlation)
- applied after (procrustes) rotation and scaling of the factor solution: φ_{rot}
- RV-coefficient (Robert & Escoufier, 1976)

$$RV = \frac{tr(\widetilde{XX'}\widetilde{YY'})}{\sqrt{tr[(\widetilde{XX'})^2]tr[(\widetilde{YY'})^2]}} \quad \text{where } \widetilde{XX'} = XX' \qquad \text{(original)}$$
$$\widetilde{XX'} = [XX' - diag(XX')] \quad \text{(modified)}$$

- orientation independent
- allows for different number of variables
- usually used to compare sample configurations (scores)
- modified version independent of sample size (Smilde, 2009) and takes values between -1 and 1 (ϕ =0 no correlation, $|\phi|$ =1 perfect correlation)

Results Fit and model selection

√ Fit and stability of the model

Between part

Number of components	1	2	3	4	5
VAF (%)	21	27	32	34	35
Mean congruency coefficient	0.98	0.95	0.96	0.85	0.88

Within part

Number of	1	2	3	
VAF (%)	0 (Unconstrained)	40	50	54
	4 (Loadings)		32	35
	3 (Loadings, cov)		31	33
	2 (Loadings, cov=0)		30	32
	1 (Loadings & var-cov)	19	21	22

Number of components		1	2	3
Mean congruency coefficient	0 (Unconstrained)	-	-	-
	4 (Loadings)	0.9920	0.9830	0.9766
	3 (Loadings, cov)	0.9919	0.5935	0.7576
	2 (Loadings, cov=0)	0.9922	0.9719	0.9707
	1 (Loadings & var-cov)	0.9935	0.9699	0.9791

⇒ Number of dimensions: between part: Qb=3, within part: Qw=2

Between part (rotated)

✓ Interpretation of the questionnaire scale usage, overall perception of milk tea

Dim 1: Novelty, Aesthetics & Complexity

Comp 2 vs. Comp 3 - Between part

•178

0.6

0.4

0.2

Component

Within part

Model 0: unconstrained

✓ Individual PCA (rotated)

- Large variability between individual
 - Loadings: $\phi_{rot} = 0.34$ (median)
 - Scores: $\phi_{rot} = 0.76$, RV= 0.64, RVM = 0.39 (median)

Loadings

ϕ_{rot}	1	2	3	7
1	-	0.64	0.21	0.58
2	-	-	0.32	0.64
3	-	-	-	0.18
7	-	-	-	-

Scores

RV	1	2	3	7
1	-	0.65	0.73	0.71
2	ı	ı	0.54	0.99
3	-	ı	ı	0.55
7	ı	ı	ı	ı

RVM	1	2	3	7
1	-	0.42	0.46	0.52
2	-	-	0.20	0.98
3	-	-	-	0.19
7	-	-	-	-

Improving interpretation Unconstrained model

✓ Segmentation

• Cluster analysis (Ward's method) based on similarity of individual loading matrices (as measured by ϕ_{rot})

Segmentation Unconstrained model

√ Example of cluster membership

- Visualisation

Within part

Model 2: constrained loadings and covariance = 0

Dim1: Aesthetics & Complexity
 Dim 2: Novelty/Familiarity

✓ Agreement between subjects:

 $- \phi_{rot} = 0.69$, RV=0.50, RVM= 0.28 (median)

Scores

φ	1	3	12	30
1	1	0.34	-0.61	0.81
3	1	i	-0.38	0.36
12	1	1	1	-0.69
30	-	-	-	-

RV	1	3	12	30
1	-	0.42	0.61	0.81
3	-	-	0.23	0.27
12	-	-	-	0.75
30	-	-	-	-

RVM	1	3	12	30
1	1	0.12	0.35	0.69
3	1	1	-0.15	-0.27
12	-	1	-	0.61
30	- 1	-	-	-

Component 1

Improving interpretation

phi=0.48

Model 2: constrained loadings and covariance = 0

√ Segmentation

 Cluster analysis (Ward's method) based on similarity of product configuration in the common space (as measured by unrotated φ)

phi=0.36

phi=0.48

phi=0.56

phi=0.29

Segmentation (Model 2)

√ Example of cluster membership

visualisation

C3 n=39 phi=0.56

Summary

- ✓ ML(S)CA proved useful approach to model our data
 - Takes account of the hierarchical structure of the data
 - Offers the possibility to impose a common factor structure across subjects
 - Allows to compare different levels of constraints for the individual models
- ✓ Congruence & RV-coefficients are useful
 - in selecting and comparing models
 - in interpreting the solution (measure of similarity between individual configuration & input for segmentation)
 - the best index depends on the purpose of the comparison/segmentation
- ✓ Unconstrained model provides the best fit but the separate interpretation of the individual within loadings matrices can be very inefficient and difficult to reveal intraindividual similarities
- ✓ Imposing SCA constraints on the within part of the data
 - Models 4 & 2 perform best: lead to comparable VAF, stability and interpretation; model 2 best VAF/complexity ratio
 - Model 3 with 2 components is unstable compared to the rest but model with only one component has reduced fit and interpretability
 - Model 1: drop in fit indicates that same variance not suitable for our data

Relation to other methods

- √ Framework for comparison in van Deun et al (2009)
 - MFA: common object model i.e. look for a common configuration of the product, preprocessing (scaling by individual), weight individual matrices by amount of redundant information (1st eigenvalue)
 - STATIS: common object mode, no specific pre-processing, larger weight on matrices with cross-products(RV) most similar to others (compromise)
 - GPA: common object mode, pre-processing taken into account by translation or scaling transformation, all individual matrices equally weighted in consensus
 - ML(S)CA: common variable mode i.e. seeks for a common set of underlying components, pre-processing: normalising per respondent taken care by offset & between part of model, all individual matrices equally weighted in solution
- Timmermans (2006) also makes the parallel with multiway methods and multilevel SEM
 - Tucker-1 model equivalent to SCA-P model
 - Tucker-2, -3 & PARAFAC more than one mode is reduced into a component matrix; possible alternatives for within part of the model
 - Existing multilevel SEM constrain within covariance matrices to be equal for all participants

References

Multilevel components analysis, M.E. Timmerman, *British Journal of Mathematical and Statistical Psychology* (2006), 59, 301-320

Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences, M.E. Timmerman, H.K. Kiers, *Psychometrika*, 2003, 68 (1), 105-121

Simultaneous Components Analysis, J.M.F. Ten Berge, H.A.L. Kiers and V van der Stel, *Statistica Applicata*, 1992, 4(4), 277-392

A unifying tool for linear multivariate statistical methods: the RV-Coefficient, P. Robert and Y. Escouffier, *Applied Statistics*, 1976, 25(3), 257-265

Matrix correlations for high-dimensional data: the modified RV-coefficient, A.K. Smilde et al., *Bioinformatics*, 2009, 25(3),401-405

A structured overview of simultaneous component based data integration, K. Van Deun et al., *BMC Bioinformatics*, 2009, 10:246

Henk Kiers and Marieke Timmermans Ivana Stanimirova My colleagues & co-authors

Backup slide: MLCA algorithm

√ Minimizing the SS_{res} using a OLS approach

Minimizing the SS_{res} using a OLS approach
$$F(m, f_{ib}, B_b, F_{iw}, B_{iw}) = \sum_{i=1}^{l} \|Y_i - 1_{K_i} m' + 1_{K_i} f'_{ib} B'_b + F_{iw} B'_{iw}\|^2 \quad \text{where} \quad \begin{cases} \sum_{i=1}^{l} K_i f_{ib} = 0_{Q_b} \\ 1'_{K_i} F_{iw} = 0'_{Q_{iw}} \end{cases}$$

Offset, between and within part solved separately by minimizing

(1)
$$f_1(m) = \sum_{i=1}^{I} \|Y\sup - 1_{K_i}m'\|^2$$
 where Ysup denotes a supermatrix with the Y_i stacked upon each others

- ⇒ Solved by taking m = vector containing the observed mean scores computed for all participants and products
- (2) $f_2(\text{Fsup}_b, B_b) = \|\text{Ysup} 1_{K_i} f'_{ib} B'_b\|^2$

where Fsup denotes a supermatrix with the $1_{Ki}f'_{ih}$ stacked upon each others

(3)
$$f_3(F_{iw}, B_{iw}) = \sum_{i=1}^{l} ||Y_i - F_{iw}B'_{iw}||^2$$

⇒Both (2) and (3) solved based on singular value decomposition

Backup slide: MLSCA algorithm

√ Minimizing the SS_{res} using an OLS approach

$$G(m, f_{ib}, B_b, F_{iw}, B_w) = \sum_{i=1}^{l} \|Y_i - 1_{K_i} m' + 1_{K_i} f'_{ib} B'_b + F_{iw} B'_w\|^2$$

- Offset, between and within part solved separately by minimizing
 - Offset and between part, see previous slide
 - Within part solved based on ALS algorithm described in Kiers, ten Berge & Bro (1999)

$$g_1(F_{iw}, B_w) = \sum_{i=1}^{l} \left(\frac{1}{n} Y'_i \mathbf{1}' Y_i\right) + \sum_{i=1}^{l} ||JY_i - F_{iw} B'_w||^2$$

subject to constraint on covariance of matrices F_{iw} of the specific SCA model

MLSCA-P:
$$\frac{1}{K_i} F_{iw}' F_{iw} = \Phi_i$$

MLSCA-P:
$$\frac{1}{K_i} F_{iw}' F_{iw} = \Phi_i$$
MLSCA-PF2:
$$\frac{1}{K_i} F_{iw}' F_{iw} = D_i \Phi D_i$$

MLSCA-IND:
$$\frac{1}{K_i} F_{iw}' F_{iw} = D_i^2$$

MLSCA-ECP:
$$\frac{1}{K_i} F_{iw}' F_{iw} = \Phi$$

Within subject model

- ✓ <u>Model 0 (MLCA)</u>: individual PCA for each subject; the space describing the products and their position therein is different for each subject; similar to like GPA (Paey's approach) except that we are not trying to rotate the results to get a consensus (might be an idea)
- ✓ <u>Model 4 (SCA-P)</u>: the space describing the position of the products is the same but the
 position of the product may vary per individual; this is similar to Tucker-1 and performing
 PCA on the stacked matrices (under certain conditions)
- ✓ <u>Model 3 (SCA-PF2)</u>: the space describing the position of the products is the same and the relative position is constrained to be the same for each subject; the variance may differ per subject; related to PARAFAC
- ✓ <u>Model 2 (SCA-IND)</u>: the components are constrained to be uncorrelated for each individual
- ✓ <u>Model 1 (SCA-ECP)</u>: most constrained model where variance is constrained to be the same for all subjects; might be less relevant to our data
- ⇒ Interesting to compare how the different models fit the data and how they can be interpreted in terms of consumers' perception

Additional issues

√ Pre-processing

- Centring across or per subject not necessary since offset and between subject terms are modelled explicitly
- Normalisation per variable (over other modes) recommended
 - Eliminate artificial scale differences between variables
 - No further lost of source of variability, factor model preserved
 - Arguable in our situation: might choose not to standardised at all, since difference in variability between variable might reflect perceived differences

✓ Rotational freedom

- Between part: insensitive to orthogonal and oblique rotation
- Within part:
 - Model 0, 1 & 4: insensitive to orthogonal and oblique rotation
 - Model 2 & 3: unique solutions
- Normalisation of component scores to facilitate comparisons

Results *Agreement between subjects*

✓ Overview (median)

	Model 0	Model 4	Model 3	Model 2	Model 1
Description	Unconstrained	Constrained loadings	Constrained loadings and cov	Constrained loadings and cov=0	Constrained loadings and var-cov matrices
Loadings	φ, φ _{rot} 0.14, 0.34	-	-	-	-
Scores	φ, φ _{rot} , RV, RVM 0.12,0.76,0.64,0.39	$\begin{array}{l} \phi,\phi_{\text{rot}},\text{RV},\text{RVM} \\ 0.07,0.63,0.41,0.19 \end{array}$	φ, φ _{rot} , RV, RVM 0.10, 0.58, 0.31, 0.10	φ, φ _{rot} , RV, RVM 0.05,0.69,0.50,0.28	φ, φ _{rot} , RV, RVM 0.03, 0.75, 0.63, 0.36

✓ Most suitable index depends on objective

- Model 0: compare rotated configuration since individual models unconstrained
 - moderate agreement on loadings
 - seemingly high agreement on scores but not higher than chance given the small number of samples
- Model 1 to 0: compare scores directly (unrotated) makes sense since loadings are constrained to be equal
 - · very low agreement
 - higher level of constraint improves agreement on relative position of products
 - model 3 falls out of this trend