

A method to investigate the stability of a Sorting map

Guillaume Blancher, Benoît Clavier, Carine Egoroff, Jason Parcon

July 2010 – Sensometrics 2010, Rotterdam

Background: what is sorting?

Renewed & growing interest for Sorting

- Sensory & consumer world [1]
- Statistical world: MDS, DISTATIS [2], FAST [3], SORT-CC [4]

Checking the quality of results in sensory analysis

	Descriptive analysis	Sorting
Panelist level	RepeatabilityDiscrimination powerAligment	Rand index & Hierarchical clustering [1,8]
		Sensory-based approaches
		 Repeated products, Repeated sessions, Comparison of different types of panelists, Comparison of Sorting with other methods
	Repeatability	■Statistical-based approaches
Panel level	DiscriminationHomogeneity	Bootstrap - Confidence ellipses on the sensory maps ([5], [6], [7])
	Tiomogeneity	Bootstrap - RV coefficient: pionneered by Faye et al. [8]
		Global analysis of the similarities/dissimiliarities between the panelists ([2], [4])

Research questions

- Need for a simple statistical approach to assess the <u>quality of Sorting results</u>
- Need to change the focus away from the graphical representation of the products, and to focus on the differences between panelists
- Can we develop a <u>simple quantified</u> <u>indicator</u> of the stability of Sorting results?
- Can we try and understand why in some cases we get stable results and in others we don't?

Data sets

		Data set	Stimuli	Type of panelists	Number of evaluations	
		DS1	11 chocolate aromas	 Half panelists were experienced in QFP™ [9], half panelists were internal employees Not familiar with the stimuli 	37	
		DS2	8 beers	"beer consumers but did not have any formal training in sensory evaluation of beers" [2]	10	
MiniVA	VAS	DS3	12 market yogurts	 Panel experienced in QFP™ But not familiar with the stimuli 	25	
		DS4	14 vanilla aromas	 Panel experienced in QFP™ Familiar with the stimuli 	3*12 = 36	■Same stimuli
		DS5	14 vanilla aromas	Internal employeesNot all specifically familiar with the stimuli	2*59 = 118	Different panelists

Evaluation = one sorting task by one panelist MiniVAS = device to release aroma to the panelists with a controlled intensity

Data set 1

Stimuli put alone more than 80% of the times	Number of stimuli clusters and cluster stability	PC1+PC2 (%)
-	3 clusters, all very stable	49.9

Overall, quite straightforward sensory space

Cluster stability

- Bootstrapped Jaccard coefficient (J) and Hierarchical Cluster Analysis with Ward's criterion [10].
- A cluster was judged stable if $J \ge 0.75$.

Data set 2

Stimuli put alone more than 80% of the times	Number of stimuli clusters and cluster stability	PC1+PC2 (%)	
EKU28 and Buckler Highland	4 clusters, not all stable	50.1	

More complicated product space than DS1

Product put alone 80% of the times or more

Data set 3

Stimuli put alone more than 80% of the times	Number of stimuli clusters and cluster stability	PC1+PC2 (%)	
-	3 clusters, not of them stable	28.4	

Overall, a complicated product space compared to both DS1 and DS2

Data sets 4 & 5 Composition of the stimuli

	Flavor	Anise	Spicy	Creamy	Vanillin	Phenol	Caramel	Vanilla	Main aroma characters
	D1	0	0	L	L	Н	0	L	Low flavor intensity
	D2	0	0	L	Н	L	0	L	Low flavor intensity
	D3	Н	0	L	L	L	0	L	Anise at a
	D4	H	0	Н	Н	L	0	L	high level
	D5	0	0	Н	L	L	Н	Н	Vanilla and caramel
	D6	Н	0	Н	L	Н	Н	Н	key notes
repeated	D7	Н	0	Н	Н	L	Н	Н	at a high level
repeated	D7.bis	Н	0	Н	Н	L	Н	Н	at a riigir ievei
repeated	D8	M	M	M	M	M	M	M	All aroma key notes
ropodiod	D8.bis	M	M	M	M	M	M	M	present at a medium level
	D9	Н	Н	Н	Н	Н	0	L	
	D10	0	Н	L	Н	Н	0	L	
	D11	Н	Н	Н	Н	L	Н	L	Spicy key note
	D12	0	Н	Н	L	Н	Н	Н	at a high level
	D13	0	Н	L	Н	Н	Н	Н	at a flight level
repeated	D14	Н	Н	L	Н	Н	Н	L	
repeated	D14.bis	Н	Н	L	Н	Н	Н	L	
							·		<u> </u>

Level	Meaning
0	Not present
L	Low
М	Medium
Н	High

	Stimuli put alone more than 80% of the times	Number of stimuli clusters and cluster stability	PC1+PC2 (%)
DS4	-	4 clusters, one of them very stable	41.7
DS5	-	3 clusters, one of them very stable	33.3

- The level of complexity of DS4 and DS5 seems to be intermediate between DS1 and DS3.
- ➤ The sensory task at hand was more difficult for DS5 than for DS4.

Bootstrapping approach

Evolution of the stability of the Sorting maps as a function of number of evaluations

➤ The RV coefficient reached with all available evaluations is a good indicator of the stability of the Sorting map.

Research questions

- Need for a simple statistical approach to assess the quality of Sorting results
- Need to change the focus away from the graphical representation of the products, and to focus on the differences between panelists
- ✓ Can we develop a <u>simple quantified indicator</u> of the stability of Sorting results?
- Can we try and understand why in some cases we get stable results and in others we don't?

Research questions

- Need for a simple statistical approach to assess the quality of Sorting results
- Need to change the focus away from the graphical representation of the products, and to focus on the differences between panelists
- ✓ Can we develop a simple quantified indicator of the stability of Sorting results?
- Can we try and understand why in some cases we get stable results and in others we don't?

Modeling the stability of a Sorting map as a function of the number of evaluations

- Slope "a" = general level of agreement between the panelists
- Intercept "b" = average level of agreement of the panelists with the consensus

Checking the quality of the model

Model:

$$RV = \frac{(e^b \cdot Evaluations^a)^2 - 1}{(e^b \cdot Evaluations^a)^2 + 1}$$

Slight underestimation of the RV coefficient at low values

Overall, very satisfactory model

- Each data set is characterized by:
 - a = agreement
 - b = discrimination
- Predicted number of evaluations necessary to reach a stable map (RV = 0.95):

Evaluations =
$$\left(\frac{1+RV}{(1-RV)\cdot e^{2b}}\right)^{\frac{1}{2a}}$$

- ➤ The number of evaluations necessary to yield a fully stable map vary depending on the characteristics of the panelists and of the stimuli.
- Starting off with 30 evaluations seems a reasonable number.

- 37 evaluations were available
- According to the model, a stable map could have been reached after only 12 evaluations
- There was a <u>very high level of</u> <u>agreement</u> between the panelists, despite the fact that they were not all specifically trained in sensory analysis and were not familiar with the stimuli.
- The high agreement is probably due to the fact that there were <u>3</u> straightforward clusters of stimuli.
- Besides the 3 clusters, not really possible to further discriminate between the stimuli.

- Only 10 evaluations were available.
- A fully stable map could have been reached after about 34 evaluations.
- There was a <u>medium level of</u> <u>agreement</u> between the panelists, probably due to the absence of training of the panelists.
- The <u>relatively high average agreement</u> <u>with the consensus</u> is probably due to the fact that 2 products were rarely or never put with the other ones

DS3

- "Only" 25 evaluations were available.
- A fully stable map could have been reached only after about <u>550</u> <u>evaluations</u>... (not reasonable)
- Low level of agreement between the panelists and with the consensus, probably due to a complex product set (multiple categorization criteria).
- Further train the panel, or ask the panelists to focus only on one given attribute at a time? Sorting task not suited?

DS4 and DS5

- Same stimuli, different panelists.
- DS4:
 - panelists highly trained to QFPTM and familiar with the stimuli; used Sense ItTM, a common descriptive language
 - a stable map (RV=0.95) was reached after 36 evaluations

DS5:

- Internal employees, not trained to Sensory analysis and not all familiar with the stimuli; no common descriptive language
- an almost stable map (RV=0.94) was reached after 118 evaluations

This approach can also be applied to Descriptive Analysis

- DA.1 [11] corresponds to a QDA® performed on the texture of jellies by a highly trained:
 - 28 evaluations were available (14 subjects, 2 reps)
 - A stable map (RV=0.95) could have been reached after only about <u>3 evaluations</u>.
 - High level of agreement between the panelists due to an extensive training,
 - High ability to discriminate between the products due to the training and to the sensory method.

Summary

	Objectives	Conclusions
Objective 1	To develop a simple quantified indicator of the stability of sorting results.	The RV coefficient reached with all available evaluations is a good indicator of the stability of a sorting map.
Objective 2	Try and understand why in some cases we get stable results, and in others we don't.	 Each sorting test is unique, no definite number of evaluations can be given a priori to reach a stable map. The stability of a sorting map depends on: the general level of agreement between the panelists the average level of agreement of the panelists with the consensus

- This rather universal approach could be extended to:
 - Other types of <u>sensory tests</u> (Flash Profiling [12], QDA®, projective mapping [13,14], etc.)
 - Other <u>statistical methods</u> which outputs are sensory maps (PCA, GPA, MDS, etc.)
- The two indicators of panel "performance" that were developed are valid at the panel level. What about the panelist level?

Acknowledgements

- Christel Adam for supporting this research
- Alexis Luco for running part of the sensory studies
- Kees Duineveld for very helpful insights

Bibliography

- [1] Faye, P., Brémaud, D., Durand Daubin, M., Courcoux, P., Giboreau, A., & Nicod, H. (2004). Perceptive free sorting and verbalization tasks with naive subjects: an alternative to descriptive mappings. *Food Quality and Preference*, 15(7-8), 781-791.
- [2] Abdi, H., Valentin, D., Chollet, S., & Chrea, C. (2007). Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Quality and Preference, 18(4), 627-640.
- [3] Cadoret, M., Lê, S., & Pagès, J. (2009). A Factorial Approach for Sorting Task data (FAST). Food Quality and Preference, 20(6), 410-417.
- [4] Qannari, E. M., Cariou, V., Teillet, E., & Schlich, P. (2010). SORT-CC: A procedure for the statistical treatment of free sorting data. Food Quality and Preference, 21(3), 302-308.
- [5] Blancher, G., Mattei, B., Oelhafen, N., & Adam, C. (2008). A comparison of free sorting and hierarchical sorting tasks, A case study with sauces. In, Agro-Industrie et Méthodes Statistiques 10èmes Journées Européennes, January 2008. Louvain-La-Neuve, Belgium.
- [6] Abdi, H., Dunlop, J. P., & Williams, L. J. (2009). How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS). Neurolmage, 45(1), 89-95.
- [7] Santosa, M., Abdi, H., & Guinard, J.-X. (2010). A modified sorting task to investigate consumer perceptions of extra virgin olive oils. Food Quality and Preference, In Press, Accepted Manuscript.
- [8] Faye, P., Brémaud, D., Teillet, E., Courcoux, P., Giboreau, A., & Nicod, H. (2006). An alternative to external preference mapping based on consumer perceptive mapping. *Food Quality and Preference*, *17*(7-8), 604-614.
- [9] Stampanoni, C. R. (1993a). Quantitative flavour profiling: an effective tool in flavour perception. Food and Marketing Technology, 4-8.
- [10] Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics & Data Analysis, 52, 258-271.
- [11] Blancher, G., Lê, S., Sieffermann, J.-M., & Chollet, S. (2008). Comparison of visual appearance and texture profiles of jellies in France and Vietnam and validation of attribute transfer between the two countries. Food Quality and Preference, 19(2), 185-196.
- [12] Sieffermann, J.-M. (2000). Le profil flash un outil rapide et innovant de valuation sensorielle descriptive. In, AGORAL 2000, XIIèmes rencontres "L'innovation : de l'idée au succès". Montpellier, France.
- [13] Pagès, J. (2005). Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire Valley. Food Quality and Preference, 16, 642–649.
- [14] Risvik, E., McEwan, J. A., Colwill, J. S., Rogers, R., & Lyon, D. H. (1994). Projective mapping: A tool for sensory analysis and consumer research. Food Quality and Preference, 5, 263–269.

Givaudane

ENGAGING THE SENSES