
Prelude 1

Problems in Sensometrics



Problem 1: Missing Data

Often, participants do not answer all 
questions. What do we do? Impute the 
values? Throw away the data? Or…?



Problem 2: Outlying Data

Some participants occasionally give random 
answers, that is, answers that come from 
some contaminant process. What do we do? 
How to identify possible outliers? How can 
we quantify the certainty that an answer is an 
outlier? And if we are, say, 30% sure that a 
response is an outlier, how should this affect 
our inference? 



Problem 3: Support for H0

Sometimes we want to quantify the evidence 
in favor of a null effect. How to do this? 
Look at power? But power against what 
specific alternative? 



Problem 4: Utilities

Suppose we find that a particular action A
will significantly increase the sales of Mars 
bars (p = .001). 
Should the Mars company take action A?
What if action A is “slash the prices in half”?
What if this quadruples the sales? – but of 
course you are never sure about how action A
will affect sales…



Problem 5: Sparsity

With many predictors, we want sparse 
solutions, particularly when p >> n.
How to accomplish this? Lasso? Ridge 
regression? Latent factor models?



Problem 6:
 Model Uncertainty

Suppose we have two competing models, M1 
and M2, and the goal is prediction.
When none of the models clearly dominates 
the other, how should we combine the 
different predictions that they make into a 
single overall prediction?  



Prelude 2

Problems in Classical,
 “Frequentist”

 
Statistics



Problem 1:
 Conceptual Confusion

What is a p-value?
What is a confidence interval?



Frequentist Inference

Procedures are used because they do well in 
the long run, that is, in many situations.
Parameters are assumed to be fixed, and do 
not have a probability distribution.
Inference is pre-experimental or 
unconditional.



Frequentist
 Confidence Intervals

Width = 1

Mean = μ



Frequentist
 Confidence Intervals

Width = 1

μ

Draw a random number x.

x

Draw another random number y. What is the probability
that it will lie to the other side of μ? 

y



Frequentist
 Confidence Intervals

Width = 1

μ

When we repeated this procedure many times , the mean μ
 

will lie 
in the interval in 50% of the cases. Hence, the interval (x, y) with 
y > x is a 50% confidence interval for μ.

x y



Frequentist
 Confidence Intervals

Width = 1

μ

But now you observe the following data:

x y



Frequentist
 Confidence Intervals

Width = 1

μ

Because the width of the distribution is 1, I am 100% confident 
that the mean lies in the 50% confidence interval!

x y



Why?

Frequentist procedures have good pre-
experimental properties and are designed to 
work well for most data.
For particular data, however, these 
procedures may be horrible.



Problem 2:
 Incorrect Conclusions

Concluding from a nonsignificant p-value 
that H0 is true;
Concluding from a significant p-value that 
H0 is false!
Why? Researchers intrinsically want to be 
able to attach probabilities to parameters and 
hypotheses. 



Problem 3: Violation of 
the Likelihood Principle

Conclusions can depend on the (possible 
unknown) intention with which the 
researcher collected the data.
Is this reasonable?



Problem 3: Violation of 
the Likelihood Principle

& “The Likelihood Principle”
 by Berger and Wolpert

 
(1988).

Second hand on Amazon: 
£176

New on 
http://imstat.org/en/index.html:
$25 

http://imstat.org/en/index.html


Problem 4: 
p-values and Evidence

P-values overestimate the evidence against 
H0 [see the many works by Jim Berger].
This tendency gets worse with n.
Some prestigious psychological journals 
publish mainly surprising findings. But for 
such findings, can we reject H0 at p = .05? 



Conclusion: Problems!?



Bayesian Statistics

Eric-Jan 
Wagenmakers
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What is 
Bayesian Statistics?

“Common sense expressed in numbers”



What is 
Bayesian Statistics?

“What you think that classical statistics is”



What is 
Bayesian Statistics?

“The only good statistics”

[For more background see
Lindley, D. V. (2000). The philosophy 
of statistics. The Statistician, 49, 293-337.]



Bayesian Inference
 in a Nutshell

In Bayesian inference, uncertainty or degree 
of belief is quantified by probability.
Prior beliefs are updated by means of the 
data to yield posterior beliefs. 



Bayes’
 

Rule
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Bayesian Parameter 
Estimation: Example

Suppose that 9 out of 10 respondents prefer 
Mars over Snickers.
What have we learned about the probability θ
that people prefer Mars over Snickers?



Mode = 0.9

95% confidence 
interval: (0.59, 0.98) 



How to Deal with Utilities

Choose the action A that maximizes your expected 
utility, 

where u(A,θ) is the utility of taking action A when 
the state of the world is given by a particular value 
θ. Note how all uncertainty about θ is taken into 
account.

( ) ( ), |u A P A dθ θ θ∫



Bayesian Model Selection

Suppose we have two models, M1 and M2.
After seeing the data, which one is preferable?

The one that has the highest posterior probability!
Compare P(M1 | D) to P(M2 | D). 



Bayesian Model Selection
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The Bayes
 

Factor

Is the ratio of the marginal probabilities of 
the data.
Is the change from prior to posterior odds 
brought about by the data.
Quantifies the evidence for one model versus 
the other provided by the data.



Interpretation of 
the Bayes

 
Factor

BF                Evidence             

1-3                Anecdotal
3-10              Substantial
10-30            Strong 
30-100          Very strong
>100              Decisive



Marginal Likelihood

The marginal likelihood is the probability of the
 data with the model parameters integrated out.

The marginal likelihood is a weighted average of 
the likelihood, where the weights are given by the

 prior.  

( ) ( ) ( )| | , |i i iP D M P D M P M dθ θ θ= ∫



Marginal Likelihood

A model with vague priors (i.e., priors that make
 everything possible by being very spread out) will

 generally have a low marginal likelihood. 
Models are punished for making false predictions.

( ) ( ) ( )| | , |i i iP D M P D M P M dθ θ θ= ∫



Marginal Likelihood

This means that marginal likelihoods prefer 
simple models over complex models; an automatic

 Occam’s razor!

( ) ( ) ( )| | , |i i iP D M P D M P M dθ θ θ= ∫



Marginal Likelihood

Note that we can use the Bayes
 

factor to 
compare the support for any two models, 
nested or not.

In addition, the null hypothesis does not
 enjoy a special status.

( ) ( ) ( )| | , |i i iP D M P D M P M dθ θ θ= ∫



Example Revisited

Twelve participants choose between a Mars bar and 
a Snickers bar. In the order that participants choose 
the bars, the data (D) take the form 
D = (M, M, M, S, M, M, M, M, S, M, M, S)
Desired is model selection concerning the 
preference rate θ: What about the hypothesis that the 
group does not show a preference (i.e., θ = 0.5) for 
Mars vs. Snickers bars?



Example Revisited

We used the binomial model, in which P(D|θ) is 
given by

where n =12 is the number of trials, and s=3 is the 
number times that Snickers was selected.

( ) ( )| 1 n ssn
P D

s
θ θ θ −⎛ ⎞

= −⎜ ⎟
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Example Revisited
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Example Revisited

Suppose all values of θ
 

are equally likely a priori:



Example Revisited
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Then

and

This means that the data are 1 0.70 1.4≈
more likely under M2

 

than under M1

 

.



Example Revisited

When we assume that the models are equally likely 
a priori, we can go from the Bayes factor to the 
posterior probability:

( )1
0.7| .41

1 0.7
P M D ≈ ≈

+



Example Revisited

Suppose M1 predicts X1 and M2 predicts X2.
Then, a “model-averaged prediction” that takes 
into account the uncertainty about the models is 
computed as follows:

( ) ( )1 1 2 2| |aveX P M D X P M D X= ⋅ + ⋅



Empirical Comparison

Does a Bayesian t-test (Rouder et al., 2009, 
PBR) yield the same conclusions than the 
traditional t-test?
“We” collected all t-tests reported in the 
2007 issues of Psychonomic Bulletin & 
Review and JEP:LMC. 



Empirical Comparison

In 252 articles, spanning 2394 pages, “we”
found 855 t-tests. 
This translates to an average of one t-test for 
every 2.8 pages, or about 3.4 t-tests per 
article.





Empirical Comparison

Bayes factors and p-values agree on the 
direction of the effect: p-values < .05 yield 
evidence against H0, and p-values > .05 yield 
evidence against H1. 
Bayes factors and p-values often disagree on 
the strength of the effect: p-values in the .01-
.05 interval are likely to yield evidence that 
is only “anecdotal”. 
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The Bayesian Revolution

Until about 1990, Bayesian statistics could 
only be applied to a select subset of very 
simple models.
Only recently, Bayesian statistics has 
undergone a transformation; With current 
numerical techniques, Bayesian models are 
“limited only by the user’s imagination.”



Markov Chain Monte Carlo

Instead of calculating the posterior 
analytically, numerical techniques such as 
MCMC approximate the posterior by 
drawing samples from it. 

Consider again our earlier example…









The Bayesian Revolution
 in Statistics



The Bayesian Revolution
 in Statistics (Poirier, 2006)





The Bayesian Revolution
 in Statistics



The Bayesian Revolution
 in Psychology?



How About Sensometrics?
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WinBUGS

Allows researchers to specify complex 
models using simple building blocks.
Model structure is that of a Directed 
Acyclical Graph.
MCMC sampling routines are applied 
automatically, without users have to hand-
code these themselves.



Process of
interest

Contaminant
process to
account for

 outliers

Mixture
rate



WinBUGS

Missing dependent variables are encoded as “NA”.
Subsequently, MCMC sampling generates a series 
of best guesses for the missing data, in the end 
generating 

( )| ,mis obsP D D θ





WinBUGS

Book (not 100% completed) and
code available from

http://www.ejwagenmakers.com/
 BayesCourse/BayesBook.html



WinBUGS

A review can be found at

http://www.ruudwetzels.com/
 articles/BMW_review.pdf

http://www.ruudwetzels.com/�articles/BMW_review.pdf
http://www.ruudwetzels.com/�articles/BMW_review.pdf
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Sparsity

In exploratory analyses, or with p >> n, we 
prefer parsimonious models.
How can this be accomplished in the 
Bayesian paradigm?
Consider, for concreteness, a linear 
regression with p regression coefficients.



Sparsity

Option 1: Bayesian model selection 
automatically prefers sparse models. See the 
recent BAS package in R.
Option 2: Bayesian model selection, but add a 
penalty that increases with model size.
Option 3: Bayesian lasso and Bayesian elastic 
nets. 
Option 4: Bayesian latent factor models.



Bayesian SEM!

Treat latent factors as missing data.

In WinBUGS
 

we can then work 
directly with the raw data (not the 
covariances).

Seems to be much simpler than 
current approaches.

Too few data points simply results 
in wide posterior distributions.



Concluding Comments

“Bayesian inference is right, and everything 
else is wrong”.
“It is better to wrestle with the practicalities 
of a method that is fundamentally sound than 
it is to interpret the outcomes of a method 
that is fundamentally unsound.”
It can be Bayesian not to be Bayesian! Is this 
why many people still say that they are not 
Bayesian?



Thanks for Your Attention!
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