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Path modelling

• Methodology for linking several data blocks (manifest variables) 
according to a given relation between the blocks (path diagram-
arrow diagram)
– causal or other

• Structural equations modelling (SEM)

– Models based on two elements/parts

• Measurement model for each manifest block, outer relations (Factor 
analysis model)

• Path model in the latent variables (inner relations)
– Joint set of regression models
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Two important traditions

• PLS
– Algorithmic foundation, not so easy to understand why works
– The criterion is somewhat complex (some new results and recent 

modifications exist)
– Convergence generally works well in practice
– Can handle collinearity and more variables than samples
– Emphasis on both scores and structure (population and individual 

differences)

• ML - LISREL
– Model and criterion based (statistical) 
– More samples than variables are required (at least for the classical 

solution)
– Less emphasis on scores, mostly on structure
– Sometimes identification and convergence problems



Possible problems

• One-dimensional blocks
– PLS. Some attempts have been made to solve it

• Deflation and PLS for the outer relations
– ML. Can be done, but possibly quite complex (identification and 

convergence)

• Same information used for prediction and 
to be predicted in each block
– No reason to expect that
– Are SEM models appropriate?



New approach
• Instead fo repairing already exsisting methods

– New approach from scratch

• Explorative, focus on interpretation, but only in 
validated models

• Two elements (estimation and interpretation)
1. SO-PLS for each endogenous block – separate models

• Sequential and orthogonalised PLS (SO-PLS)
• Cross-validation (global and incremental)

2. Principal components of prediction (PCP) for interpretation



SO-PLS, Regression method based on 
serial/sequential modelling

(focus on incremental contributions)

X Z VY + +=

eVZXY +++= θγβ

Jørgensen, K., Segtnan, V., Thyholt, K. and Næs, T. (2004). 
A comparison of methods for analysing regression models 
with both spectral and designed variables.  J. Chemometrics, 18, 10, 451-464



SO-PLS
Sequential orthogonalisation and the use of PLS

• Fit first block Y to X with PLS (scores and loadings)

• Orthogonalise Z with respect to X

• Fit Y to the Z(orth) (scores, loadings)

• Orthogonalise V wrt X and Z

• Fit Y to V(orth) (scores and loadings)

• Fit Y to scores TX, TZ and TV (independent)

At each step: Fit Y to the part of a new block that is orthogonalised to previous
blocks.



Properties of SO-PLS
• Scale invariant wrt blocks

• Different dimensionality in each block allowed
– Can combine design variables and others

• Incremental contributions.
– Type I strategy (ANOVA)

• Many more variables than samples allowed

• Good prediction and improved interpretation as compared to joint PLS. 
– Can interpret each block separately

• No convergence problems

• LS if all components are included

• In this context: The problem of same information for prediction and to be predicted vanishes
– extends the standard SEM assumptions



PCP for interpretation
• The SO-PLS leads to many plots in this context.

– We want one plot for each endogenous block
– Use PCP – principal components of prediction

• Idea. PLS components are introduced for prediction and do not 
necessarily reflect the natural dimension of the problem.

– Also difficult to interpret if many

• PCA of predicted Y (scores and Y-loadings)
– Scores and Y-loadings
– The scores are linear functions of the independent variables (X-loadings)
– The latter gives X-loadings

• Can also look at more details in the SO-PLS model 
Langsrud, Ø., Næs, T. (2003). Optimised score plot by 
principal components of prediction. Chemolab. 68, 61-74. 
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Number of manifest variables: 5, 3, 10, 9, 1
Number of samples = 21



EDCBA

Dependence diagram, usually quite obvious
(Sometimes a choice has to be made)

For each endogenous block, the arrows indicate the input



Måge plot for model 2, prediction of C from A and B



Explained variances (cross-validation) for the different input matrices in all the 4 models.

Model 1 Model 2 Model 3 Model 4

Block A 37 (1) 42,5 (4) 0,0   (0) 0,0   (0)

Block B 45,3 (1) 41,1 (2) 0,0   (0)

Block C 50,9 (2) 78,4 (2)

Block D 96,5 (3)



Explained variances (in %) of the predicted Y (CV)

Model 1 Model 2 Model 3 Model 4

1. component 100 61 85 100

2. component 81 96

3. component 92 97

Model 2 is clearly 2-dimensional
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For one-dimensional blocks



Common variability for prediction 
and to be predicted?

• Block B contributes in addition to A for predicting C, but this 
contribution has no relation to the predicted values of B from block 
A. 

• This shows that the part of block B that can be predicted from A has 
no overlap with the part of B that adds to predicting C. 

– There is more in block B that is useful than the part that can be 
predicted

– SEM paradigm in this case?



Possible extensions

• Interactions and non-linearities
– ”Simple” within this framework

• Add extra matrices of products (like in standard PLS)
• Or add extra marices based on principal components
• Type I philosophy (or Type III)

• Variable selection
• Jack-knife – technically not problem
• Influence on validation?


	Path modelling by sequential PLS regression
	Path modelling�
	Dianummer 3
	�Two important traditions�
	Possible problems
	New approach
	Dianummer 7
	SO-PLS�Sequential orthogonalisation and the use of PLS�
	Properties of SO-PLS
	PCP for interpretation
	Dianummer 11
	Dianummer 12
	Dianummer 13
	Dianummer 14
	Dianummer 15
	Dianummer 16
	Dianummer 17
	Dianummer 18
	Common variability for prediction and to be predicted?
	Possible extensions

