Path modelling by sequential PLS regression

Tormod Næs, Oliver Tomic, Bjørn-Helge Mevik, Harald Martens

Nofima Mat

Path modelling

- Methodology for linking several data blocks (manifest variables) according to a given relation between the blocks (path diagramarrow diagram)
 - causal or other
- Structural equations modelling (SEM)
 - Models based on two elements/parts
 - Measurement model for each manifest block, outer relations (Factor analysis model)
 - Path model in the latent variables (inner relations)
 - Joint set of regression models

Sensory analysis of wine

Smell after shaking

Two important traditions

PLS

- Algorithmic foundation, not so easy to understand why works
- The criterion is somewhat complex (some new results and recent modifications exist)
- Convergence generally works well in practice
- Can handle collinearity and more variables than samples
- Emphasis on both scores and structure (population and individual differences)

ML - LISREL

- Model and criterion based (statistical)
- More samples than variables are required (at least for the classical solution)
- Less emphasis on scores, mostly on structure
- Sometimes identification and convergence problems

Possible problems

- One-dimensional blocks
 - PLS. Some attempts have been made to solve it
 - Deflation and PLS for the outer relations
 - ML. Can be done, but possibly quite complex (identification and convergence)
- Same information used for prediction and to be predicted in each block
 - No reason to expect that
 - Are SEM models appropriate?

New approach

- Instead fo repairing already exsisting methods
 - New approach from scratch
- Explorative, focus on interpretation, but only in validated models
- Two elements (estimation and interpretation)
 - 1. SO-PLS for each endogenous block separate models
 - Sequential and orthogonalised PLS (SO-PLS)
 - Cross-validation (global and incremental)
 - 2. Principal components of prediction (PCP) for interpretation

SO-PLS, Regression method based on serial/sequential modelling (focus on incremental contributions)

$$Y = X + Z + V$$

$$Y = X\beta + Z\gamma + V\theta + e$$

Jørgensen, K., Segtnan, V., Thyholt, K. and Næs, T. (2004).

A comparison of methods for analysing regression models with both spectral and designed variables. J. Chemometrics, 18, 10, 451-464

SO-PLS Sequential orthogonalisation and the use of PLS

- Fit first block Y to X with PLS (scores and loadings)
- Orthogonalise Z with respect to X
- Fit Y to the Z(orth) (scores, loadings)
- Orthogonalise V wrt X and Z
- Fit Y to V(orth) (scores and loadings)
- Fit Y to scores TX, TZ and TV (independent)

At each step: Fit Y to the part of a new block that is orthogonalised to previous blocks.

Properties of SO-PLS

- Scale invariant wrt blocks
- Different dimensionality in each block allowed
 - Can combine design variables and others
- Incremental contributions.
 - Type I strategy (ANOVA)
- Many more variables than samples allowed
- Good prediction and improved interpretation as compared to joint PLS.
 - Can interpret each block separately
- No convergence problems
- LS if all components are included
- In this context: The problem of same information for prediction and to be predicted vanishes
 - extends the standard SEM assumptions

PCP for interpretation

- The SO-PLS leads to many plots in this context.
 - We want one plot for each endogenous block
 - Use PCP principal components of prediction
- Idea. PLS components are introduced for prediction and do not necessarily reflect the natural dimension of the problem.
 - Also difficult to interpret if many
- PCA of predicted Y (scores and Y-loadings)
 - Scores and Y-loadings
 - The scores are linear functions of the independent variables (X-loadings)
 - The latter gives X-loadings
- Can also look at more details in the SO-PLS model Langsrud, Ø., Næs, T. (2003). Optimised score plot by principal components of prediction. Chemolab. 68, 61-74.

Smell after shaking

Number of manifest variables: 5, 3, 10, 9, 1 Number of samples = 21

Dependence diagram, usually quite obvious (Sometimes a choice has to be made)

For each endogenous block, the arrows indicate the input

Måge plot for model 2, prediction of C from A and B

Explained variances (cross-validation) for the different input matrices in all the 4 models.

	Model 1	Model 2	Model 3	Model 4
Block A	37 (1)	42,5 (4)	0,0 (0)	0,0 (0)
Block B		45,3 (1)	41,1 (2)	0,0 (0)
Block C			50,9 (2)	78,4 (2)
Block D				96,5 (3)

Explained variances (in %) of the predicted Y (CV)

	Model 1	Model 2	Model 3	Model 4		
1. component	100	61	85	100		
2. component		81	96			
3. component		92	97			

Model 2 is clearly 2-dimensional

61%

Scores plot for model 2, C predicted from A and B

Loadings -plots for Y and X, PCP 8.0 1.2 • Rest 1 Shaking 1 0.6 Shaking 5 Shaking 9Shaking 8 0.4 0.8 -• Rest 5 Shaking 6 Shak ng 7 0.2 0.6 0 0.4 Shaking 3Shaking 2 -0.2 • Shaking 4 0.2 + Rest 2 View 2 View 3 -0.4 Shaking 10 Rest 4 -0.6 -0.2 -0.5 -0.6 -0.4 -0.2 0.2 -1.5 -1 -0.8 0 0.4 0 0.5 PC1 PC1

A, B

For one-dimensional blocks

Common variability for prediction and to be predicted?

 Block B contributes in addition to A for predicting C, but this contribution has no relation to the predicted values of B from block A.

- This shows that the part of block B that can be predicted from A has no overlap with the part of B that adds to predicting C.
 - There is more in block B that is useful than the part that can be predicted
 - SEM paradigm in this case?

Possible extensions

- Interactions and non-linearities
 - "Simple" within this framework
 - Add extra matrices of products (like in standard PLS)
 - Or add extra marices based on principal components
 - Type I philosophy (or Type III)
- Variable selection
 - Jack-knife technically not problem
 - Influence on validation?