

Discrimination Tests With Sureness: Thurstonian and R-Index Analysis

Graham Cleaver

Consumer Perception & Behaviour Unilever Food & Health Research Institute Vlaardingen

Sensometrics July 2008

Unilever Categories & Brands

Content

A / Not-A Test Procedure

R Index is the percentage of all possible 'theoretical' pairwise comparisons between each Control and each Test product that would be classified correctly Pure Chance: R Index = 50% Perfect Discrimination: R Index = 100%

In this example, R Index = 82%

R Index Alternative Analyses

- ronortion
- R-Index as binomial proportion
 Bi J. & O'Mahony M. (1995) Table for testing the significance of the R-Index Journal of Sensory Studies 10 (4), 341–347
- 2. R-Index equivalent to Mann-Whitney U Statistic, with correction for ties Mann H.B. & Whitney D.R. (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50-56
- 3. R-Index with revised variance estimator Bi J. & O'Mahony M. (2007) Updated and extended table for testing the significance of the R-Index Journal of Sensory Studies 22 (6), 713-720

Aim:

- Establish which is most appropriate / most powerful significance test for the R-Index
- Compare with Thurstonian analysis in terms of power
- Create power curves for difference testing and similarity testing

Thurstonian Model

SAS Code Equal Variance

DATA DAT; INPUT PRODUCT SURENESS COUNT; LINES; 01 4 02 11 03 8 04 4 05 2 06 1 11 0 12 2 13 5 14 8 15 12 16 3	PROC LOGISTIC DATA=DAT; WEIGHT COUNT; MODEL SURENESS=PRODUCT / AGGREGATE SCALE=NONE LINK=PROBIT; RUN;
RUN;	

Analysis of Maximum Likelihood Estimates									
Parameter		D F	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept	1	1	-1.1642	0.2832	16.9001	<.0001			
Intercept	2	1	-0.0437	0.2175	0.0404	0.8407			
Intercept	3	1	0.6879	0.2297	8.9681	0.0027			
Intercept	4	1	1.3468	0.2595	26.9415	<.0001			
Intercept	5	1	2.4484	0.3499	48.9596	<.0001			
PRODUCT		1	-1.3401	0.2971	20.3437	<.0001			

SAS Code Unequal Variance

Obs	STIM	SURENESS	NR	NT	RP	NC
1	0	1	11	50	0.22	6
2	0	2	19	50	0.38	6
3	0	3	10	50	0.20	6
4	0	4	7	50	0.14	6
5	0	5	2	50	0.04	6
6	0	6	1	50	0.02	6
7	1	1	4	50	0.08	6
8	1	2	6	50	0.12	6
9	1	3	9	50	0.18	6
10	1	4	12	50	0.24	6
11	1	5	9	50	0.18	6
12	1	6	10	50	0.20	6

Parameter	Estimate	Approx Std Error	Approximate 95% Confidence Limits		
C1	-0.7355	0.0884	-0.9627	-0.5083	
D1	0.9346	0.0783	0.7334	1.1357	
D2	0.6266	0.0641	0.4618	0.7914	
D3	0.7520	0.0849	0.5337	0.9703	
D4	0.6445	0.0988	0.3906	0.8983	
В	1.1825	0.1281	0.8532	1.5117	
Α	-0.2451	0.0899	-0.4763	-0.0139	

PROC NLIN DATA=DAT: PARMS C1=-2 D1=0.5 D2=0.5 D3=0.5 D4=0.5 B=1.0 A=0.05; BOUNDS D1>0, D2>0, D3>0, D4>0; END; AX=EXP(A*STIM); IF SURENESS=1 THEN DO: ZJ=(C1-B*STIM)*AX; MODEL RP=PROBNORM(ZJ): END; IF SURENESS>1 AND SURENESS<NC END; THEN DO: IF SURENESS=2 THEN DO; KJ=C1+D1: K0=C1; END; IF SURENESS=3 THEN DO; END: KJ=C1+D1+D2; K0=C1+D1; END: IF SURENESS=4 THEN DO: KJ=C1+D1+D2+D3; K0=C1+D1+D2; END: RUN;

Power Depends On Scale Usage

Power Determination: Simulation

Power Comparison

Power Comparison

Power Curve Comparison

Power Curve Comparison

Power: Difference Test

Power: Similarity Test

Power: Similarity Test

Individual vs Pooled Analysis

		Sam	Same as Reference			Different to Reference				
Subject		Sure	Not Sure	Guess	Guess	Not Sure	Sure	Total	R Index	Std Err
1	Ref	0	4	1	3	2	0	10	78.5	126
	Test	0	0	0	5	4	1	10	70.5	12.0
2	Ref	0	0	4	3	2	1	10	76.5	127
	Test	0	1	0	0	6	3	10	- 70.3	12.7
	Ref	1	5	3	1	0	0	10		
	Test	0	0	6	2	2	0	10	84.0	12.6
4	Ref	3	5	0	0	2	0	10	77.0	
	Test	0	2	5	2	0	1	10		12.9
									, 	
5	Test				5 4		0	10	84.0	12.6
										EM - 5.63
									zali = 00.0 S	= 5.29 **
				· · · · · · · · · · · · · · · · · · ·					1	
Pooled	Ref	4	15	11	12	7		50	73.9	5.7
L	Test	0	3	11	13	16	7	50		

z = 4.21 ***

Alternative Analyses

Pooled Analysis

- Most suited to analysis of one individual, pooling over replicate assessments
- Or where it can be safely assumed that individual assessors are the same and using the scale in the same way

Individual Analysis For Each Assessor Before Pooling

- Protects against bias caused by differences in usage of scale
- Requires some replication of each product per assessor
- Initial results indicate 4+ reps per assessor

New Directions

• Aim: Overall analysis that allows for individual differences in sensitivity and boundary criteria, and influences of other factors Poster P13: A statistical model for A-Not A data with and without sureness. R.H.B. Christensen G. J. Cleaver and P. B. Brockhoff

Summary

R-Index

- Important to use the correct analysis for significance test
- Recommended: Test based on U-Statistic with ties
- Or test in Bi (2007) if table of critical values required

Thurstonian Analysis

- Based on assumption about underlying nature of perception
- More insights on perceptual difference and scoring
- Similar power to R-Index analysis

Power Charts

- To be used according to objective of study
 - * Difference Test
 - * Similarity Test

New Directions

- Potential bias with simple pooling of data
- Analysis based on individual R-Index values safer
- New Generalised NL Model see Poster (Christensen et al)